
SALT : Software for Adversarial Life Testing

by

Simon P. Wilson

The George Washington University, Washington, D.C 20052

GWU/IRRA/Serial TR-91/12

December 1991

Research Supported by

Contract N00014r85-K-202

Office of Naval Research

Grant DAAL03-87-K-0056

The Army Research Office

and "***«*..„"

Grant AFOSR-89-0381

The Air Force Office of Scientific Research

19950505 210

SALT : Software for Adversarial Life Testing

by

Simon Wilson

The George Washington University, Washington, D.C. 20052

This report describes software that has been developed for calculations appearing in Lindley k

Singpurwalla (1990). It will begin with a brief description of the paper and then outline the program

and what it does.

The paper by Lindley k Singpurwalla concerns itself with adversarial life testing. In particular it

considered the situation where a manufacturer must decide whether to offer a sample of his product for

testing in order to convince a consumer of the reliability of that product. If testing is to be done then it

considers how many of the product should be tested. This is a decision problem and so first a

probability model and set of utilities need to be developed. Then a simple criterion for whether testing

should begin is given, and how many products should be tested if testing is to occur; the latter is done

by picking the number of products to be tested that maximize expected utility.

SALT is a program that calculates these expected utility values. These values are a function of many

parameters, related to both the utility function and the probability model, which need to be specified

before the program can be run. A list of the parameters needed, and a brief description of their

meaning, is given below.

«!, aj, aa and p : these specify the consumer's utility. The consumer's utility of accepting a product

with observed lifelength x is axx
p- a? (so -^ is the utility to the consumer of accepting an item that

does not work). The utility of rejecting a product is a constant ag. SALT automatically sets p to 1.

bu 1*2, D3 and q : these specify the manufacturer's utility. The manufacturer's utility is a mirror image

of the consumer's ; the utility to the manufacturer of product acceptance with an observed lifelength x

is blX
p- b2, whilst the utility of rejection is b3. Unlike p, SALT allows q to be specified by the user.

b4 : the fixed cost to the manufacturer of putting an item on test. "

b5 : the fixed cost to the manufacturer of an item failing on test. &=?*

b6 : the cost of running the test is assumed proportional to the total time on test. The constant of Q

proportionality is b6; so the cost of running the test for 1 unit of time is b6.

<tx and ß1 : the consumer is assumed to express his opinion about the mean lifelength of the product

Availability Codes

\MB%

jm

Avail apd/os*
Spealal

-a
mi

that is being tested before the test is done by an inverse prior distribution, with scale parameter ax and

shape parameter ßv

a2 and ß2 : the manufacturer also expresses his (possibly different) prior opinion about the mean

lifelength of the product on test by an inverse gamma distribution with scale a2 and shape ßT

N : the size of the batch from which products may be drawn for testing; obviously the most products

that can be tested is N.

n : this is a SALT parameter. SALT will calculate utilities for testing upto n items, where n < N. The

user will find that calculations for n>15 become very time consuming.

SALT is designed to be user-friendly, and is menu-driven. The first task for the user is to specify a

valid set of the parameters that have just been described; this is done by selecting the input parameters

option. For each parameter a brief description of what it represents will be given, and the user is also

free to select the default value which has been derived from MIL STD 781C, a standard testing plan

used by the US Government. To prevent overflow it is recommended that the values of the parameters

av ßv a2, ß2 and q be not too large, and in particular that a2, ß2 and q are less than about 70.

Elicitation of the prior parameters av ßv a2 and ß2 may not only be done by direct specification, but

by through the prior elicitation option. This option relates them to the standard MIL STD 781C

testing plan, which requires specification of a minimum acceptable mean time between failure, specified

mean time between failure, manufacturer's and consumer's risks and so on; using this information the

program fits an appropriate inverse gamma prior; see Lindley and Singpurwalla for more details.

Once the parameters have been entered, the user can then proceed with the solving of the decision

problem or return to alter parameter values. Whilst the computer is finding utility values, it displays

the current status of its calculations. To calculate utility values up to about n=12 takes very little

time, but calculations for n=13 and higher become progressively slower. Beyond n=15 they can be

prohibitively slow. Once calculations have been completed then the user can display the results in a

table or as a graph, or alternatively send the output to a printer.

Reference

Lindley, D.V. and Singpurwalla, N.D. (1990) Adversarial Life Testing. Technical Report

GWU/IRRA/Serial TR-90/5, The Institute for Reliability and Risk Analysis, The George Washington

University, Washington, D.C.

